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SUMMARY 

IA Holzer-Myklestad type of procedure, using a matrix formulation, is de- 
veloped for the determination of the natural vibration characteristics of a 
pretwisted rotating "blade in coupled bending and torsion. The nonrotating 
Made is considered as a special case. Results of a limited parametric study 
are presented^] It is found that in the case of the rotating "blade there can 
he an appreciable effect of centrifugal forces in coupling the "bending and 
torsional vibrations. 

'In order to investigate the effects of Coriolis forces and the nonlinear 
effects of large angular displacements, a study is made on the basis of a 
simple model! Numerical results indicate that the Coriolis forces may intro- 
duce substantisa^pliase differences between bending and torsional vibration. 
Limited numerical results on the nonlinear effects indicate that these effects 
decrease slightly the frequency of the characteristic motions as determined 
from a linearized analysis and introduce some coupling between the character- 

istic motions. 

VI1 



1.  INTRODUCTION 

In a previous report the natural vibration characteristics of rotating 
twisted "blades were studied for the special case of coincident mass and elas- 
tic axes. This eliminates coupling "between bending and torsional vibration, 
and the problem was studied as one in bending vibration only.  Bending de- 
formation about both principal axes of the cross section was considered. 

The present work represents an extension of this previous work to the 
case of noncoincident mass and elastic axes, that is, the case of coupled 
bending and torsion. This case has already been treated analytically in 
rather complete fashion in Ref. 2, the problem being formulated in terms of 
governing differential equations and also in terms of energy principles. How- 
ever, very few results are presented in that reference, and they are for a few 
special cases of a rather restrictive nature. 

In the present work a different analytical approach has been used.  It 
involves essentially an extension of the Holzer-Myklestad method for deter- 
mining the bending vibrational characteristics of a beam to the case at hand. 
The Holzer-Myklestad method had previously been extended by Targoff* to the 
case of bending of twisted rotating blades and applied in Ref. 1.  It was 
found to be particularly well-suited to automatic digital computation, and, 
for that reason, has been extended in the present work to include torsion as 
well, and has been applied in a limited parametric study. 

An effect of centrifugal forces in coupling bending and torsional vibra- 
tion, considered initially in Ref. 2, is taken into account in the present 
work.  It arises when the mass and elastic axes of the blade are not coinci- 
dent. 

It should be remarked that the inclusion of torsional deformation compli- 
cates the effects of pretwist and rotation considerably. There may be a siz- 
able steady-state or "pseudo static" torsional deformation of the rotating 
blade in some cases. This is due to centrifugal twisting moment which, in the 
case of negative pretwist and positive pitch, tends to twist the blade nega- 
tively, and also to the twisting moment associated with tensile stress in the 
longitudinal fibers, the so-called "centrifugal untwisting moment." These 
two effects oppose each other in the normal case, and the extent to which one 
or the other predominates depends primarily upon the amount of pretwist and 
the pitch setting of the blade. An analysis of this deformation and presen- 
tation of some results are given in Ref. k. 

Additional effects relate to a departure of the torsional stiffness from 
the value provided by Saint Venant theory. This departure is associated with 



inclination of the longitudinal fibers of the blade with respect to the elas- 
tic axis, due to both pretwist and torsional deformation.  The normal stresses 
in these fibers can be seen to have components in the plane of a cross section 
and to exert a torsional moment about the elastic axis. They arise from two 
sources.  Firstly, there are normal stresses associated directly with torsional 
deformation that are present even in a nonrotating blade.  These stresses may 
introduce a substantial nonlinearity into the torsional stiffness.3-5 Secondly, 
there are normal stresses associated with centrifugal forces, contributing to 
the torsional stiffness in a manner which is essentially linear for practical 
deformations: that is, there is a linear relationship between torque and elas- 
tic twist.3J^ Some theoretical results for the case of torsional vibration, 

with some or all of these effects included, are presented in Refs. k  and 6. 

Because of the possibility of substantial pseudo-static torsional deforma- 
tion and nonlinearity in the torsional stiffness, an accurate determination of 
the natural frequencies of vibration of a twisted blade should be based on 
linearization with respect to the pseudo-static deformation. This has not been 
done explicitly in generating the results presented in the present report. The 
values of pretwist selected must be interpreted to include pseudo-static de- 
formation. This facilitates comparison with the results of Ref. 1, where 
pseudo-static torsional deformation would have an influence on bending vibra- 
tional characteristics, and where the values of pretwist must be similarly in- 
terpreted to include such deformation. 

Another interesting aspect of the rotating blade vibration problem is dis- 
cussed in Ref. 7-  It is shown that Coriolis forces, or so-called "secondary 
inertia" forces, associated with the combined vibrational and rotational mo- 
tion introduce a phase difference between the bending and torsional vibration. 
In order to investigate this effect more fully and to investigate the non- 
linear effects of substantial angular displacements on the dynamic character- 
istics of a rotating blade, an additional study, reported in Section 3> was 

conducted on the basis of a simple model. The nonlinear effects considered 
are those associated with inertia forces.  Nonlinearity in the torsional 
stiffness, as discussed above, and the effects of centrifugal tension on the 
pseudo-static deformation and on torsional stiffness are not included, al- 
though they could, in any extension of the present work, be included without 
undue complication. 



2.  BLADE ANALYSIS 

SYMBOLS 

A = GJe + Tk| + EBi(ß')
2 

Ä = A/EIlQ 

Bi, B2   section constants defined in Appendix A 

C = EB2ß'/A = C 

E       Young's modulus 

Eli, EI2 "bending stiffness ahout major and minor principal centroidal axes, 
respectively 

Eli = Eli/EIiQ, EI2 = EI2/EI2o 

e       distance "between mass and elastic axis, positive when mass axis 
lies ahead 

e = e/R 

e.      distance between area centroid of tensile member and elastic axis, 
positive when centroid lies ahead 

eA = eA/R 

e       distance at root "between elastic axis and axis about which blade is 
rotating, positive when elastic axis lies ahead 

e0 = 
e
0/R 

GJg     effective torsional rigidity 

GJe = GJe/EIi0 

I(>, I    mass moment of inertia of cross section about £ and Y] axes, re- 
spectively, defined so that corresponding moments for an element dx 
are Ipdx and I^dx 

H - yp0
R2 \ = y^2 



kA polar radius of gyration of cross-sectional area effective in 
carrying tensile stresses about elastic axis 

kA = kA/R 

kj-, k^     mass radii of gyration about t,  and TJ axes, respectively 

i length of blade segment 

I i/R 

M3., M2     bending moment about major and minor principal axes of cross 
section, respectively, when centrifugal tension is assumed to 
act along undeformed position of elastic axis 

m mass of blade segment 

Px> P£, P^  resultant loadings per unit length in the X,£,TJ directions, 
respectively 

Q resultant torque about elastic axis at any cross section 

1X; <!(;> 1^  resultant torsional loadings per unit length about the X,£,T] 
axes, respectively 

R blade radius 

T centrifugal tension, ß Tj. 

N 

T = Y   Pi'Ä 
1=1 
K 

T! = £ Pii±x± 

i=l 

u displacement in the x direction 

Vi, V2      shearing forces in the direction of the minor and major principal 
axes of the cross section, respectively 

x>y>z coordinate system which rotates with blade (Fig. 2.2) 

x = x/R 

Y = (EB2ß')2/EI2 



Y = Y/EIl0 

ß angle "between major principal axis of cross section and plane of 
rotation, either in the undeformed or pseudo-static state 

ß' = dß/dx 

ß' = ß'R 

Aß increment in ß "between "blade segments 

72 = EIl0/EIa0 

5,5      displacements of the elastic axis in the y and z directions, 
y   Z 

respectively 

61/ S2     displacements of the elastic axis in the direction of the minor 
and major principal axes of the cross section, respectively 

(; T)       coordinates in direction of minor and major principal axes, 
respectively 

0 total twist in "blade "between x = 0 and x.= R, 9 = -Rß' 

\ = o> Vp0R
4/EIl0 

u = (Wp0R4/EIi0 

p mass per unit length of "blade 

P = P/P0 

<f> torsional displacement, positive when leading edge is up 

ü) natural frequency of "blade vibration 

0 rotational velocity 

[ ]        rectangular matrix 

{ ]        column matrix 

Other symbols are defined in the text. 

Subscripts 

n order of natural mode 



0 value at x = 0 

T value at x = R 

( )', ( )"  differentiation with respect to x, except in Appendix C. 

BASIC MATRICES 

The governing differential equations of motion for a rotating blade with 
offset mass and elastic axes have "been derived and are reported in Ref. 2. 
These equations are repeated in Appendix A.  In the present report these equa- 
tions have been adapted to a matrix formulation which permits rapid numerical 
analysis. This method is essentially an extension of the one presented in Ref. 

1. 

The coordinate axes of the blade are shown in Fig. 2.1. The cross section 
coordinates and displacements are shown in Fig. 2.2. The blade is divided into 
a number of spanwise segments, not necessarily equal in length. The mass of 
each segment is assumed concentrated at its center, and the bending stiffnesses, 
Eli and EI2, the torsional stiffness, GJe, and the angle of incidence, ß, are 
assumed constant between masses, appropriate average values being selected. 
The built-in twist is accounted for by relative rotations of adjacent uniform 
bays (between masses) about a spanwise axis, the change in angle Aß being 
equal to the total twist in a segment and occurring just outboard of the mass 

(Fig. 2.3). 

The quantities Vi, Mi, 5i, 6i, V2, Us,  bz,  S2, Q, and <f>  (Fig. 2.2), which 
apply when the beam is at its maximum displacement in a free vibration, are 
defined at stations along the beam and may be represented at any station in 

the form of a column matrix: 

{AJ  = < 

Mx 

6i 
Si 

v2 
M2 
52 
52 
Q 

4J 

V (2.1) 

The elements of this matrix will vary along the beam in such a manner that 
the variation can be considered to occur in a series of steps. Moving from the 



f.8,.V,,M2 

TENSION AXIS 

Fig. 2.1.    Blade axes. 

V  >h .V, 

(b) 
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tip toward the root of the beam, the change in (A] occurring from a station 
immediately outboard of one mass to a station immediately outboard of the next 
mass can be broken down into three steps, the first involving movement across 
the mass, the second involving movement from one end to the other of a weight- 
less uniform bay, and the third involving movement across the discontinuity in 

ß. 

The relationship between the (A) matrices as they apply at the two ex- 
tremes of this travel can be represented as follows: 

(A}n+1 "'=  [R][E][FKA)n 2.2 

where [F], [E], and [R] are rectangular matrices representing linear rela- 
tionships corresponding to the three steps discussed previously. 

The [F] matrix, relating the (A) matrices on either side of a concen- 
trated mass, is written as follows: 

1 0 0 Fl4 0 0 0 F18 0 F110 

0 1 F23 F24 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 0 F54 1 0 0 F58 0 F510 

0 0 0 0 0 1 F67 F68 0 0 

0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 F94 0 0 0 F98 1 F910 

0 0 0 0 0 0 0 0 0 1 

(2.3) 

where 

F14    =    ip(ur+fi2sin ß) 

2. 
Fie    =    -  tp& sin ß cos ß 

F110    =    ipe{üü2+n2(sin2ß-cos2ß)) 

ol3a£ 
F23    =    £l2^+ il^o^+fi2) 

ipeQ^cos  ß 

(2.M 



F24      =      ~   Pixft2 

2 
F210    =    -p/exfi 

F54 = F18 

F58 = pi(üo2+n2cos2ß) 

F510 = - Spie^sin ß cos ß - pfO^o sin ß 

F67 = ei^ + iic(co2
+^) 

^68 = F24 

2  2 
F94 = pie(o) +fi sin ß) 

F98 = - pief^sin ß cos ß 

F910 = id^+I^)^ + (lT1-I^)(cos
2ß-sin2ß)ifi2-ipee0fi2cos ß     (2.4) 

The derivation of the elements of this matrix is given in detail in Ap- 
pendix B, except for the contribution of centrifugal force coupling, which is 
treated separately in Appendix D.  It is seen that only the shear forces, tend- 
ing moments, and torque are changed, since there are no discontinuities in 
slope or displacement. The changes in shear force are due partly to the in- 
ertia force associated with the vibrational motion of the mass and partly to 
the component of centrifugal force normal to the undeformed position of the 
elastic axis. Part of the change in torque is related to the change in shear, 
since the mass and elastic axes do not coincide, and part is due to the inertia 
force associated with the torsional vibrational motion. The change in bending 
moment, except that associated with centrifugal force coupling, is fictitious 
and arises from a special feature of the analysis.  This feature involves the 
replacement of the component of the centrifugal force parallel to the unde- 
formed position of the elastic axis by an equal force along the line of the 
undeformed axis and an appropriate couple to provide static equivalence. The 
changes in bending moment indicated in the [F ] matrix are then due only to the 
applied couple, the moment due to the force applied along the undeformed axis 
being accounted for in the [E ] matrix.  When moments due to both sources are 
considered, the discontinuity in bending moment disappears. Note that, on 
the basis of this procedure, the bending moment at any station is not M, but 
rather M plus the moment of the tensile force T acting along the undeformed 
elastic axis. 

The elements in the [E] matrix are found by the solution of the differ- 
ential equations of combined bending and torsion of the weightless uniform 
bay between masses. These equations and their solutions are given in Appen- 



dix C. The resulting [E] matrix is: 

1 0 0 0 0 0 0 0 0 0 

E21 1 0 0 0 0 0 0 0 0 

E31 E32 E33 E34 E35 E3S E37 E38 E39 E310 

E41 E42 E43 E44 E45 E4S E47 E4 8 E49 E410 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 E65 1 0 0 0 0 

E71 E72 E73 E74 E75 E76 E77 E78 E79 0 

Esi Es2 E83 Eß4 Es5 Ess E87 Ess E89 0 

0 0 0 0 0 0 0 0 1 0 

E101 E102 E103 El04 E105 E106 E107 E108 El09 E1010 

(2.5) 

where, if ve define 

2     2 
(Pi-ai)(p2-ai) 
(ai-a3)(pf-pi) 

P2 = 
(Pi-ai 

(ai-a3)(pi 
Hpg-aa) 

(Pi-a3 )(pj- 

■P2) 

•ai) 
(ai-a3)(pf-pl) 

(2.6) 

(Pi-a3 Ml a3) 
(ai-a3)(pi- Pi) 

the components of E are given below. The quantities p^, a^, and f^ are de- 
fined in Appendix C. 

E23 

r ^ 
E31    =-T-=r--<((a2a6P4-a3a8P3)cosh pii +   [-a2a6P4+a3a8(P3+l) ]cosh p2i-a3a8y- 

faEIi   I J 

^32 —i-3— sinh pxi + —i-2— sinh p2i 
EI1P1 EIip2 

(2.7) 

^33 P3 cosh pii +■ P2 cosh p2i 

10 



E34     =~a1EIiE32 

^35 
:__agP4—fl_  sinh pii _ 1_ slnh p2|j 

a3a4EI2 \Pi Pa       / 

E36 = - &z tT    (cosh pii-cosh p2l) 
a3a4Jii2 

E37 = a3El2E35 

E3s = -a3El2E36 

^39 -_ 
a2 

f2(pf-pl) 
■(pi-a3)pl cosh Pi!+(p2-a3)pi cosh p2i + a2a3 

fa 

E310 =-a2EI1E32 + E36W 
(N) 

Mi =    ^ iL    4(-a3a8P3+a2a6P4) — sinh pxi 
f2EIi   I Pi 

+     [a3a8(P3+l)-a2aßP4] — sinh p2!-a3a8f 
(2.7) 

E42 = 
Eli 

2, a 
pi(p2-a3)+a3(p2-a1) _ P3 cosh pii + ?2  cosh p2i 

(ai-a3)pip|     pi p2 

E43 = -EIiE32 

L44 

145 

2  o 
aa(pi-pa)Pi _ ai|s. cosh pii + *i|2 cosh p2i 

PiPa      Pi Pa 

a3a4p 
a2I42^T     ft Pi-Pi) + Pscosh pH  - pfcosh pall ■4PlP2M2 L -1 

MR En=-, 

E47 = _a3El2E45 

E48  -  E37 

11 



a2 
E49 

fa(p?-pl) 
■(Pi-a3) E2- sinh Pii+(p2-a3) Ei sinh p2i 

Pi P2 
+ a2a3l 

fa 

E410 = a2EIiE42 + E46W 
(N) 

^65 

E71  = - 
a4 

a2f2EI;i 
(a2a6P2-a3a8P1)pi sinh pLi + (-a2asP3+a3a8P;L )p2 sinh p2lj 

E   = +  a4Pl  (cosh pii-cosh p2i) 
a2EIi 

E73 = §^Ei (_Pl sinh Pii+p2 sinh p2i) 
a2 

E74 =-aiEIiE72 

E75 =-_|— (E77-l) 
a3üi2 

E7, 6 -- a3EI2 
(P2pi sinh Pii-P3p2 sinh p2i] 

(2.7) 

E77 = P2 cosh pii - P3 cosh p2i 

E78 = - a3EI2E76 

E79 =- §*PP2
P, [~-(pt-

ai) sinh Pi' + (Pa-ai) sinh p2! 
fa(Pi-Pa) L      Pa Pi      -I 

E71o = -a2EIiE72 + E76W 
(N) 

^81 
a4 

a2f2EI 
-  r(a2a6P2-a3a8Pi)cosh pxi +  (-a2a6P3+a3a8Pi)cosh p2i-a2a6J 

Es2    =    -&lfe(pTSinhPli-ia-SinhP2) 

E83    = -EIiE72 

12 



E84 = aiEIiEs2 

^85 a3EI2 
(E87-i) 

286  - a3EI2 (E88-l) 

E8T =-?§. sinh pil ^ 3- sinh p2£ 
Pi P2 

^88  =  P2 COSh PiI - P3 COSh p2i 

a%    -  f-(p!-ai)pl cosh pii+(pl-ai)p! cosh p2*~| + &1&A. 
f2(pl-P2) 

E8io = a2EIiE82 + E86W 
(N) 

1 
4.01 = a2f2EIi 

2 

(Pi-a3) (a2a6P2-a3a8Pi) sinh pxi 
Pi 

(P2-a3)   (a2a6P3-a3a8Pi)   sinh p2i+a2a3a6£ 
P2 

^102 

4os 

 P 

a2pip; 

p 
a2 

£^5  ra3(p?-pI)-(pf-a3)plcosh pii+(pi-a3)pfcosh p2J 
IpgEIi  L 

1 I".   (Pi-a3)  sinh       t +  (P2-a3)  sinh Vsl 

2 L Pl P2 J 

E104  =    aiEIiEi02 

(2.7) 

^105 

^106 

a3a4pip2EI2 
-ai(pi-p2)+(pi-ai)p2 cosh pi£-(p2-ai)pi cosh p2i '] 

a3a4EI2 
(Pi-ai) sinh pii - (P2"a^ sinh p2£ 
Pi P2 

E107 = -a3EI2E105 

E108 = a3EI2Eio6 

13 



1-109  - Yz -aia3i - (pi-aiHPi-a3)P2 sinh Pli + (P2-ai)(p2-a3)Pl  . h   J 
-1- J        / 2  2 \    - rx        / 2  2 N ' 

(P1-P2JP1 (P1-P2JP2 

(2.7; 
^1010 

ai 
P1P2  (ai-a3) 

Pi(pl-a3)-a3(pl-ai) + Pi !-(pi-a3)p2 cosh pxi 

+ (P2-a3)pi cosh p2* r+ E106W 

Note that £>i and 82 are positive for increasing deflection in the positive x 
direction. 

The [R] matrix serves to rotate the coordinate axes through the angle Aß 

and is written as follows: 

[R] 

cos Aß 0 0 0 -sin Aß 0 0 0 0 0 

0 cos Aß 0 0 0 -sin Aß 0 0 0 0 

0 0 cos Aß 0 0 0 -sin Aß 0 0 0 

0 0 0 cos Aß 0 0 0 -sin Aß 0 0 

sin Aß 0 0 0 cos Aß 0 0 0 0 0 

0 sin Aß 0 0 0 cos Aß 0 0 0 0 

0 0 sin Aß 0 0 0 cos Aß 0 0 0 

0 0 0 sin Aß 0 0 0 cos Aß 0 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 

(2.8) 

METHOD OF SOLUTION 

By a successive multiplication of the appropriate matrices, a linear re- 
lationship can be established between the [A] matrices at the root and tip of 

the beam 

<AW = Cc]^}tip (2.9) 

Recognizing that the shears, bending moments, and torque are zero at the 
tip of the beam, the (Aj-^^p matrix can be reduced to a five-element matrix, 
and the corresponding five columns can be eliminated from the first [F ] matrix 
at the tip of the beam; successive multiplications will then yield a 10 x 5 
matrix product. 

In order to satisfy the boundary conditions at the root of the beam, the 
determinant of a 5 x 5 matrix formed from appropriate elements of the [C] 
matrix must equal zero.  For example, for a cantilever blade the third, fourth, 

Ik 



seventh, eighth, and tenth rows form the 5x5 determinant, and for a fully- 
articulated blade with torsional restraint the second, fourth, sixth, eighth, 
and tenth rows form the determinant.  Other boundary conditions, such as 

elastic restraint at the root, can he handled easily. 

The elements of this determinant will he polynomials in aß-,  and upon 
expansion a polynomial equation in CD

2
 will he ohtained.  In principle, the 

natural .frequencies of the hlade could he determined by solving for the roots 
of this equation; however, such a procedure is far too cumbersome to be feas- 

ible . 

A more practical procedure involves the introduction of trial values of CD 

into the various [F] matrices and evaluating the elements of all matrices 
numerically. The matrix multiplications can then be carried out numerically, 
and the appropriate determinant evaluated. The value of this determinant, 
which may be termed the "residual," may then be plotted versus CD or CD

2
 and 

the location of the zeros of the residual will determine the natural fre- 

quencies of the blade. 

STEADY-STATE DEFORMATION 

As pointed out in the introduction, there may be a sizable steady-state 
or "pseudo-static" torsional deformation of the rotating blade in some cases. 
The loadings which produce this deformation are given in Appendix B along 
with those induced by the lateral and torsional vibratory motion.  It is 
possible to determine this pseudo-static deformation and to then find the 
natural frequencies based on linearization with respect to the pseudo-static 
deformation.  In the numerical results which follow this has not been done 
explicitly. The values of pretwist selected should be interpreted to include 

the pseudo-static deformation. 

In order to determine the pseudo-static deformation let us define the 

following matrices: 

[A]i = column matrix of blade variables just outboard of mass i 

{A}^ =. column matrix of blade variables just inboard of mass i 

[F0].  = matrix [F] with CD = 0, across mass i 

(d) = column matrix of steady state quantities across mass i 
i 

(g).  = column matrix of steady state quantities across bay between 
masses i and i+1 

[D]jL =  [R]j_[E]j|_ across bay between masses i and i+1. 

15 



Then it follows that 

•  A   1 

& (2.10) 

and 

-M [D]i   !    [g)i 

w: "i". fh] 2.11] 

Starting at the root where 

(A) root (A) n+1 

we have 

Jroot [H] ; (h) 

Co] : "i" 1"( (2.12) 

where 

[H] ; (h}~ 

X riD_k : Lg2i r[F°]i ! w± 
LIPJ l i \yr i 

and in which i decreases as one proceeds from left to right. 
Equation (2.12) may he written 

(Mroot =  [H]fA)l + ^ (2.12a) 

Satisfying the "boundary conditions at the root and the tip of the blade,  Eq. 
(2.12) may be reduced to 

[HW]   {A(D)I     =     -   (h(K))     , (2.13) 

16 



where 

öi 

5i 
[A(D} =^&2(- (2.1U) 

&2 

and where K = 1 corresponds to a fixed root, and K = 2 corresponds to a fully- 
articulated root (Mi = Ms =0).  [H^K'] is a square matrix of order 5, and 
(hvlv)] ,j_s a five element column matrix. 

In the case of a fixed root, [H^1)] is obtained by deleting rows 1, 2,  5, 
6, and 9 and columns 1, 2, 5, 6, and 9 from [H], and (tit1)} is obtained "by- 
deleting rows 1, 2,  5, 6, and 9 from (h).  Similarly, in the case of a fully 
articulated blade, [H(

2
)] is obtained by deleting rows 1, 3, 5, 1,  9 and 

columns 1, 2, 5, 6, and 9 from [H]., and (h(2)]is obtained by deleting rows 1, 
3. 5, 7, and 9 from [h}. 

Equation (2.13) may be solved for (A'
1
^), and (A] then determined for all 

stations by applying Eqs.(2.10) and (2.11), starting at the tip and progress- 
ing toward the root. 

The matrices (d) and (g) are each ten-element column matrices which are 
obtained from the steady state terms in Appendices B and C. From Appendix B, 

di = - ptti2  sin ß(e0+e cos ß) 

d2 = d3 = d4 = d7 = d8 = dio = 0 

d5    =    plO2 cos ß(e0+e cos  ß) (2.15) 

2 
ds    =    -pi x eü 

ds = (i^-IfOiH2 sin ß cos ß - piee^ sin ß • 

Appendix C shows that the (g) matrix can be derived from the [E] matrix if 
the terms involving Ms and Q are extracted and M2 and Q are replaced by Te^ 

and Tkfß', respectively. Thus, 

i = Sis^A + Ei9TkAß'   • (2.16) 
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NONDIMENSIONAL FORM 

It is convenient and desirable to treat the problem in nondimensional 
form. The (A) matrix can be redefined in terms of nondimensional forces, 
moments, and deformations as follows: 

(A) 

ViRa/EIig 

MiR/EIlo 

Bi 

oi/R 

V2R
2/EIl0 

|M2R/: EI io 

&2 

62/R 

QR/EIi0 

i 

> 

u 

(2.17) 

The corresponding nondimensional form for the [F] matrix follows: 

[F] = 

1 0 0 Fl4 0 0 0 E18 0 F110 

0 1 F23 F24 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 F54 1 0 0 F58 0 F510 

0 0 0 0 0 1 F67 ^68 0 0 

0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 E94 0 0 0 R98 1 E910 

0 0 0 0 0 0 0 0 0 1 

(2.18) 

where 
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  —, -22 2 
Fi4     =     ip(X +M-    sin    ß) 

'18 ipp.    sin ß cos  ß 

Fiio =    P^e{\ +|i (sin ß-cos ß)}  - pie0n cos ß 

_73,2 
r23 = £i^+ ii^x^2: 

12 

F24     =     -  pix|i2 

F210  =     -  M- P^ex 

F54     =    Fi8 

F58    - pi(\ +n cos  ß) 

(2.19) 

-510 pip. sin ß(2e cos ß+e0) 

F67    =    ^-^- +  iItU2+M.2) 
12 s 

F68    =    F24 

  —_    22      2 
Fg4    =    pie(\ +n sin ß) 

F98    =    - pie p. sin ß cos ß 

F910 =    (l^+lTj)iX2 + p2i cos 2ß(lT)-I(;)   - pee0i|-rcos ß 

19 



And the corresponding [E] matrix 

[E] 

where 

E2] 

^31 

1 0 0 0 0 0 0 0 0 0 

E21 1 0 0 0 0 0 0 0 0 

E31 E32 E33 E34 E35 E36 E37 E38 E39 E310 

E41 E42 E43 E44 E45 E4S E47 E48 E49 E410 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 §65 1 0 0 0 0 

E73. E72 E73 E74 E75 E76 E77 E78 E79 E710 

E81 Ea2 §83 Eß4 Eß5 E86 Eß7 Ess Es9 EBIO 

0 0 0 0 0 0 0 0 1 0 

E101 E102 E103 E104 E105 E106 El07 E108 El09 1 

!< 

(2.20) 

T2EI1 (; 

EiiPi 

(a2a6P4-a3a8P3)cosh p  i+ [-a2a6P4+a3a8(P3+l)Jcosh p2i-a3a8 

  p         p  
Eo2    =   rr-3— sinhfii - —. _    sinh p2i T,T — El!p2 

^33 P3 cosh pi/ + P2 cosh"^' 

E34 = aiEI1E32 

^35 

E. 

E37 

E38 

E39 

(2.2i; 

36  - 

7Z&2?J    (i- sinh pii - i- sinh fei 
"ä3a"4EI2 V Pi P2       > 

Z f2£t  (cosh pii-cosh p2i! 
a3a4El2 

a3El2 E 35 

+ ^|^E36 
7 

a2 

?2(P?-P1) 
(pf-a3)pl cosh pii-(pl-a3)pi cosh p2i - ^2- 

20 



E3io =    a2EI;iE32 + |/WWE 36 

E. '41 -—L—I (-a3a8P3+a2a6P4) — sinh pii 
fsEIi t Pi        ,, 
^ a3ai (P3+l) -äsäsP^i^ inh p27--a-3ä8r C 

E42 = A. [-Pi(pg_-a3)+äf;(pg-äx) _ P3 cosh 5iI + || cosh -2j 
El (ai-ä3)plp|      pi P2 

E43 = EIiE32 

M4 

^45  = 

a3(p!-gj)Pi . liPa cosh - j + aiPg. 
_2_2 -=2        ^       
PlP2 P1 

Pi* + _2 "~ cosh p2i 
Pi 

ä2P4y
2 

a3S4pfp|EI2 

[000 «2 ~™— I 
(Pl-P2)+P2  cosh p*ii-pi  cosh p2i   I 

E. '46 ^35 

E47 

E48 

asEIs - 
P ü45 

.   7 

=    E 37 (2.21) 

E. 149 

=-410 

[- 
-2 

(Pi-a3) %r- sinh pii+(p2-a3) ^ sinh p27 a2 _ 
f2(p!-pi) L '" """ Pi "~ " "'"  """   ~' P2 

2_(N)_ 
Ü2EIiE4a + |i W      E46 

+ a2a3T 
f2 

E65      -      ' 

E71    =    —t4—     R-a2ä6P2+ä3a8Pi)px sinh pi£+(a2ä6P3-a3a8Pi)p2 sinh p2Jl 
a2f2EI 

E7o    =    a4_j-    (cosh pii-cosh p2i) 
ä3EIx 

E73    =    ■4r-i (-"Pi sinh p"ii+p2 sinh p2i  ) a2 

E74.    =    aiEIiEy2 
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E75    =   ~^z— (I-E77) 
a3EI2 

— 2 __ _ ^   
E76    =      y_     (-P2P1 sinh Pii+P3p2 sinh p2£) 

ä3EI2 

E77    =    P2 cosh p'ii  - P3 cosh p^i 

E78    =    äs|l2E7 
7 

E79    =    -at_gPfg t     (Pi-ai)    sinh Pii-(p2-aif ^inh p2i] 
fa(pl-Sa)   L -I 

  2-(N)_ 
E710  =    äsEIiEys  + ^2W      E76 

Eei    =_  - !j       (ä2ä:6P2-ä3ä8P1)cosh :p1T+{-ä.2e-eP3+'^3^e:Pi)cosh p2F-ä2äJ 
a2f2EIi   L J 

E82    =    " Mf" (sr sinh pi! + i- sinh paf) 
a2El!  \£i p2 y 

Eß3     =    EIiE72 

Es4     =    aiEI1E82 

E8S  = - ^=-  (E87+i) 
a3üil2 

_       2   _ 

EBB = r2^ (E88-l) a3EI2 

^87 = " ^r-  sinil Pi' + =?■  sinh P2* 
Pi P2 

E88 = P2 cosh p].i - P3 cosh p2f 

(2.21) 

^89    =    -  % _a,   r-(pf-Si)pf cosh PiZ+Cpf-ä^pf cosh pafl + §JÄt 

_     2-(N)- 
E8io =    asEIiEga + n W      E8S 

22 



=•101 
ä2f2EIa 

lPi-a3;   (ä2a6P2-a3a3Pi)sinh pii 
L    Pi 

\V2J^3)      (a2a6P3-ä3a8Pi)sinh p2i 
P2 ] 

'■•102   - gi [ä3(p2~pl)-(pf-ai)pl cosh pil+(pl-ä3)p! cosh p21+ä2a3a6i 
ppiplEii L      "   -■ J 

a? 

S      T/-2   _ 
Eio3 

Pj 
äs 

Pi-a3J- sinh pxi  -   lPfa3J   sinh pxi 
P.1 P2 1 

E104 = aiEIiEiQ2 

El05 =   Ji'lla-  [-äi(p?~pi) + (p?-äi)pl cosh pii-(pl-ai)pi cosh p2i] 
a3a4pip2EI2 

L (2.21) 

Ll06 - 

2^    T/-2 _ 
7   P4 " 

a3a4 
4__ ["(Pi-ai' 
Ela L Pi 

_2 
?2J 
P2 

sinh pii - 2§lSii sinja Pai| 

^107 
ä3EI2Eios 

E1O8 = 
ä3EI2Eio6 

72 

E109 -äiä3i - , o1 g,  (pi-äi)(pt-a3) fr sinh pxi 
I-P2) L 

,->-■ _ax ,(Pi-ai)(Pi-a3) =f 
(P1-P2) L Pi 

+ ■ (p!-3i)(pi-a3) |^ sinh p2i| T 

l^|_Jü  fcfdl-SaJ-äaCpi-ä!)] +PX f-(p!-S3)pl cosh pxF 
'ifi Uai-äa) L J    L 

r]U n2 

J
1010- ^2. 

P1P2 

o p _    
+ (p2~a3)pi cosh p2i ^Ko, 

The nondimension quantities used ahove are defined as follows: 

ai = M. 
2 T 

Ein 

a2 = ki 
2 JJ_ 

Eli 

(N) (2.22) 



a3    =    V?72 dr- 
EI2 

a4   =   - y -JY VI/EI2 

a6    =    H 0 

a7    = -^--JY-J^ 
7 

a8    =   A (N) 

f o    =    A " Y a8 - a4a7 

M^Ü2 

Eli 
AT 

EI2> 

TY 
El, 

a2a6-a8(ai+a3)+aiä4a7 

f2    = 

_2 
Pi 

lA2 

EI1EI2 
(TA-M2!!2)    =    ä3(a1a8-a2a6) 

2fo     "N 

P2 fl . 

2fo     -N 

2    .   f2 

■ 1   = 

p2 

F* 

-(N) 
U 

w<*>   = 

(2.22) 

— 2   — 2 
(pi-ai)(pg-äi) 

(äi-ä3)(pf-pl) 

(gi-äi)(pl-Sa) 
       __ 2      2 
(ai-a3)(pi-p2) 

(Pi-ä3)(pg-äi) 

(ai-ä3)(pf-pl) 
2 2 

(Pi-ä3)(p2-S3) 
__ 2      2 

(ai-a3)(pa-p2) 

sin ß^r    )     iiPiej_Xj_sin ß^ + cos  ß^    \     ^iPieiXj. cos ßj_ 

i=l 
N. N 

ßfj   )     ^iPieixi sin ßi + sin ßjj   )     'iPiei*i cos ß± 

i=l 

cos 

i=l 

where N denotes the number of masses outboard of the bay under consideration. 
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The (d) matrix has the components 

di = - ipu2 sin ß(e0+e cos ß) 

d2 = d3 = d4 = d7 = d8 = dio = 0 (2.23) 

d5 = Ipu cos ß(e0+e cos ß) 

-v-o 1 |S d6 = - ipxen' 

d8 = (1,,-IfOiu sin ß cos ß - ipee0|i2 sin ß , 

and the components of [g] are 

gi  = ^2(Ei2TeA+Ei9Tl5ß
f)   . (2.24) 

For the case of zero rotational velocity, the [F] matrix is obtained 
directly by substitution of u = 0. When this substitution is made in the [E] 
matrix, some of the elements are found to be of indeterminate form and a 
limiting process must be applied. This results in: 

E21 - I 

E31 
T 

2EIi 

E32 
_ _T_ 

Eli 

(2.25) 
^33 

E34 = 0 

£     -    J3 
6EI1 
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i42 ^31 

M3 

M4 

E«R     =     I 

E75 
ygF / A 
2EI2  \A-Y 

E76     -     " £i2 yf-Y 

E77   —  1 

E78 =   0 

E79 

^85 

_ 2l l (A 

" EI2    \Ä-Y 

ygi3 /  A 

6EI; 

(2.25) 

^86 -   E75 

Eß7      -      "   ' 

Ena     -     1 

Eß9 
C72i2 f _A_ 
2 EI2 \A-Y 

^105 E89 

nos E79 
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H07 

^108 (2.25) 

A+Y 

NUMERICAL RESULTS 

A program of computations was performed for two representative cantilever 

blades. The properties of these "blades are given in Table 1. They 
were chosen to have the same tending properties as blades for which numerical 
results are reported in Ref. 1. For these two, the section constants Ii, I2, 
Bi, B2, GJe, k^ correspond to those for a thin-walled rectangular section, and 
it was assumed that some nonstructural mass was distributed in such a way as 
to provide an offset between the mass and elastic axes, and to provide suffi- 
cient mass moment of inertia to make the uncoupled first torsional frequency 
and the second uncoupled flapwise frequency coincide. The result in both cases 
is a lightly coupled system as far as flapwise bending-torsion is concerned. 

In both cases the blades were divided into ten segments, the cantilever 
root condition was applied, and the four lowest frequencies were determined. 
A range of values of pretwist and rotational velocity was chosen, and the re- 
sults are presented in Figs. 2.4-2.60 In addition, results for beam No. 2 
with rotary inertia neglected are presented in Fig., 2.6, and with centrifugal 
force coupling neglected in Fig. 2.7» 

DISCUSSION OF RESULTS 

The influence of twist on the natural frequencies of nonrotating blades 
is shown in Fig. 2.4. The fundamental frequency in each case is almost com- 
pletely unaffected. The higher frequencies are affected by the coupling be- 
tween flapwise bending and. torsion, and between all three types of deformation 
when twist is introduced. 

The combined effects of rotation and twist on blade No. 1 are illustrated 
in Fig. 2.5. In the untwisted, nonrotating case the fundamental mode is iden- 
tified as predominantly flapwise bending; the second mode is uncoupled chord- 
wise bending; and the third and fourth modes are coupled flapwise bending and 
torsion. The effect of rotation and twist is to couple the first two modes. 
A comparison of the results in Fig. 2.5 with results in Ref. 1 for a beam with 
the same bending properties but with torsion neglected shows that essentially 
no change has been introduced by the presence of torsion. The fourth frequency 
in Fig. 2.5 differs slightly from the third frequency for the beam in Ref. 1, 
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TABLE  I 

BEAM PROPERTIES 

Beam No. 

T 
h 
1_ 

h/L 2.285-10-1 6.225-10-2 

h/R 1.000-10-2 1.000-10"2 

e 0.25 L 0.15 L 

eD 0 0 

*A 0.015522 O.OU926 

ß>ji 0 0 

72 1.000-lO"1 1.000-10-2 

Ii[in.*] 2.355 h3t 8.I987 h3t 

I2[in.
4] (2.355-io)h3t (8.1987-102)h3t 

Bx[in.6] 32.692 h5t I5.3I4-5 h5t 

B2[in.
5] 0 0 

GJ* 1.153 1.U05 

h 2.190-10-5 2.U02-10"5 

h 5.832-10-3 7.1li4-'10"3 

*Aluminum is  assumed. 
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Fig. 2.4. Effect of twist on natural frequencies of nonrotating blades. 
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while the third frequency in Fig» £.5 is a new one introduced "by the presence 
of torsion.  It is seen that twist has little effect on the third and fourth 
frequencies shown in Fig. 2.5• A  small difference between the results in Ref. 
1 and the present results is introduced by the inclusion of rotary inertia 
in the present analysis. 

The results for "blade No. 2 presented in Fig 2.6 show that the funda- 
mental frequency is essentially unchanged by the presence of torsion when com- 
pared with results for a similar blade reported in Ref. 1. For this blade the 
fundamental mode is predominantly flapwi.se tending., The second and third modes 
for the untwisted, nonrotating blade are coupled flapwise bending and torsion, 
and the fourth mode is uncoupled chordwise bending. When rotation and twist 
are added, the three higher modes exhibit considerable coupling, and it be- 
comes difficult to reach any general conclusions. When compared with the re- 
sults in Ref0 1 for a similar blade without torsion, it is seen that the' ef- 
fect of the presence of torsion is to introduce a new frequency and to modify 
the other two frequencies a moderate amount,, That these two frequencies are 
not modified more by the presence of torsion is to be expected since the coupl- 
ing for this blade (and also for blade No. l), as represented by the amount 
of offset between the mass and elastic axes, is relatively small. 

The neglect of rotary inertia has a negligible effect on the natural fre- 
quencies except for those cases in which there is chordwise bending. For exam- 
ple, in the case of the untwisted beam No. 2 the. only frequency which is ap- 
preciably affected is the uncoupled chordwise bending frequency. The magnitude 
of this effect is shown in Fig. 2.6. 

The effects of centrifugal force coupling on beam No. 2 are shown in 
Fig. 2.7.  Curves with and without centrifugal force coupling are shown for 
0=0° and 30° °  Only the 0 = 0° case is shown for the second frequency to 
avoid confusion in plotting. The 0 = 30° case for the second frequency is 
modified by a slightly smaller amount. The 0=0° case which represents 
uncoupled chordwise bending (the fourth frequency for the nonrotating beam) 
is essentially unaffected, as is the 0 = 3O0 case for the third coupled fre- 
quency.  It can be seen from these results that centrifugal force coupling 
can have an appreciable effect on some of the vibration characteristics. 
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3-  SIMPLE MODEL ANALYSIS 

SYMBOLS 

ai,a2 functions defined immediately following Eq. (3.13) 

e offset of mass e.g. from supporting rod, positive forward 

e nondimensional form of e, e/r 

■+■>->■ 

i,j,k unit vectors along the x,y,z axes respectively 

I moment of inertia of mass m about supporting rod 

I0 moment of inertia of mass m about its own e.g. 

Ip moment of inertia of flywheel 

K kinetic energy of system 

kg stiffness of bending spring 

kv stiffness of torsion spring 

m mass 

Mrp shaft torque 

MT nondimensional form of Mrp, Mj/mr^ft2 

p differential operator 

r length of supporting rod from shaft to mass m 

R radius vector from origin to element of mass dm 

t time 

U potential energy of system 

v velocity vector of mass element dm 

v magnitude of v 
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x,y,z axes fixed to supporting rod and mass assembly 

y y-coordinate of mass element dm 

Xp,ypi,Zp stationary axes 

a. orientation angle of "bending hinge axis 

ß angle simulating built-in twist 

7 built-in coning angle 

e phase lag of motion in ^-coordinate relative to motion in 9- 
coordinate 

0 elastic displacement about bending hinge 

9S pseudo-static value of 9 

9 departure of 9 from 9S 

90 amplitude of 9, also initial value of 9 

p nondimensional radius of gyration of mass m about supporting rod, 
\/l/mr2 

p0 nondimensional radius of gyration of mass m about its own e.g., 
■4I0/mr2 

T nondimensional form of t, fit 

^ elastic displacement about torsion hinge 

</> pseudo-static value of <fi 

$ departure of (f>  from </> 

</>0 initial value of $ 

</>Q initial value of ^' 

S^i amplitude of </> 

\|f angular displacement of shaft 

CD angular velocity vector of x,y, z frame 
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"boUVjU^z components of to along the x,y,z axes, respectively 

05 natural frequency of characteristic oscillation 

ÖDijücg first and second natural frequencies of characteristic oscillation 

fi rotational velocity of shaft 

DESCRIPTION OF THE MODEL 

In order to examine some effects of nonlinearity and Coriolis forces in 
the free vibrations of a rotating elastic "blade in coupled bending and torsion 
and to consider the effects of certain parameters on the static deformation of 
the rotating blade, a simple model with a small number of degrees of freedom 
is set up and analyzed. 

The model consists of a rigid weightless rod on one end of which is mounted 
a mass and the other end of which is connected to a rotating shaft. The connec- 
tion to the shaft is through a hinge with axis normal to the rod and set at an 
angle to the shaft. A spring, restraining motion about this hinge, simulates 
bending stiffness. In addition, the rod is free to rotate about its own axis 
against the action of a spring, which simulates torsional stiffness. The mass 
is assumed to be distributed along a line normal to the rod, simulating the 
major principal axis of a blade cross section, with its center of gravity dis- 
placed from the rod, simulating an offset of the mass axis of the blade from 
the elastic axis. 

The orientation of the model relative to a set of fixed axes and the gen- 
eralized coordinates defining its configuration are shown in Fig. 3-l. The 
final orientation is reached by aligning the model initially with the fixed 
axes and then executing a sequence of rotations. The fixed axes x„, y„, z_ 
form an orthogonal set oriented so that the xp-axis is coincident with the 
shaft centerline. Their origin is at the intersection of the rod and the 
shaft centerline and is coincident with the origin of the model axes x, y, z. 
The x-axis lies along the rod, the y-axis is parallel to the line along which 
the mass lies, and the z-axis completes the orthogonal set. 

The model is initially aligned so that the x, y, z axes are coincident 
with the xp, yp, zp axes, respectively. The following rotations, positive 
in the right-handed sense, of the x, y, z frame are then executed in sequence: 

1. A rotation about the Zp-axis through the angle t to the position Xi, 
yi, zi.  \|r then defines the shaft rotation. 

2. A rotation about the yi-axis through the angle -y  to the position X2, 
y2, Z2• -7  then defines a built-in coning angle. 
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Bending Hinge Axis 

»haft 
Axis 

Flywheel 

Mass, parallel to 
y-Axis 

Supporting Arm 
and Torsional 
Hinge Axis 

Fig. 3.1. Model coordinates. 

3. A rotation about the x2-axis through the angle a to the position x3, 
y3, z3. The y3-axis then defines the position of the hinge axis. 

k.    A rotation about the y3-axis through the angle -0 to the position X4, 
y4, z4 . This represents a rotation about the hinge axis simulating 
tending displacement.- 

5. A rotation about the X4-axis through the angles ß and 4  in sequence 
to the final position x, y, z. The angle ß simulates built-in twist, 
and the angle </>  elastic twist. 

The angles a,   ß,  and 7 are constants and constitute parameters in the 
problem. The angles t, Q,  and $  are generalized coordinates representing 
shaft rotation, bending, and torsional displacement, respectively. 

DERIVATION OF THE EQUATIONS OF MOTION 

The equations governing the motion of the model are now derived using 
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Lagrange's equation. Toward this end it is necessary to obtain an expression 
for the kinetic energy of the system in terms of the generalized coordinates. 

Assuming a flywheel of moment of inertia IF to be mounted on the shaft, 
and defining m as the magnitude of the mass mounted on the rod, the kinetic 
energy of the system may be written, 

K = l1^2 +|/vadm (3-D 

where v is the magnitude of the velocity vector v of an element of the mass m. 

v may be developed from the relation, 

■+■    •»■-♦■ 
V  = CD X R (3.2) 

where CD is the angular velocity vector of the x, y, z frame and R" is the radius 
vector of dm. Substituting 

CD =  0^1 + CDyj + CDzk (3.3) 

-+■       -*■■*■ 

R = ri + yj (j.U) 

where i, j, k are unit vectors along the x, y, z axes, respectively, into Eq. 
(3.2) the following is obtained, 

v    =    - ycuzi + rcDj-j  + (ytOx-rcOyJk     . (3.5) 

Thus, 

v2     =    y2a|  + r2cof +  (ytDx-rccy)2 (3.6) 

and Eq.   (3«l) may now be written, 

K    =    - Ij42 + 2 mr2(cDy-Ki|) + 1 iCo^+ül)  - mrecox CDy (3.7) 
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Neglecting gravity forces, the potential energy of the system may be written 

as follows, 

U = |-keG
2 + \\(jf (3.9) 

where kg and k^ are the spring constants of the springs restraining motion in 

6 and <j>  coordinates. 

Substitution of Eqs. (3-7), (3-8) and (3.9) into Lagrange's equation, 

L.&y *+%- = 0    (1=1,2,3)        (3.10) 

where q.i = 9,  q2  = 4>  13 = t>  yields the following differential equations, 

[mr2+I sin2(ß+i*0 ]6 +   [mre cos(ß+jzO]ß +    -mr2  sin a cos 7+mre a2 cos(ßV) 

+ I sin(ß+jzO(-sin(ß+jzOsin O. cos 7+ai cos(ß+^))    t 

+    -21 sin(ß+^){cos(ß+^)sin a cos 7+ ai sin(ß+jzO )-2mrea2  sin(ßV)    M 

+   [21 sin(ß+^)cos(ß+j^) ]90 +   [-rme  sin(ß+(zO]sa 

+    mi^aiaa+mrefai cos(ß+^)sin a cos 7+(a2-a|)sin(ß+^)} 

- las sin(ß+s^)(cos(ß+^)sin a cos 7+ai sin(ß+$0)    ^ 

+ kQ0    =    0 (3-11) 

HO 



[mre cos(ß+^)]8 + 1^ +    Ia2-mre(cos(ß+szOsin a cos y+a,x sin(ß+^)}|  if 

+    2mrea2  sin(ßV)+2I sin(ßV) (cos(ß+^)sin a cos 7+ax sin(ß+^))J Öf 

+   [-1 sin(ß+^)cos(ßV)]ö2 

+    mrea2(-sin(ß+^)sin a cos 7+ai cos(ßV)) 

+ I(-sin(ß+szOsin a cos 7+ai cos(ß+^)} (cos(ß+$0sin a cos y+ax sln(ß+$)}\ if 

+ kj   =   0 (3.12) 

-mr2sin a cos 7+mrea2 cos(ß+jzO+I sin(ß+^){-sin(ß+s^)sin CC cos 7+ax cos   (ß+^)} 9 

+    Ia2-mre[cos(ß+jzOsinQ!cos 7+&i sin(ß+^))    $ 

+    IF+mr2(sin2 a cos2 7+a2)-2mrea2[cos(ß+^)sin a cos 7+ax sin('ß+^)] 

+ Ia2+I(-sin(ß+szOsin a cos 7+ai cos(ß+s^))2    if 

+    -2mr2aia2+2mre(a2 sin(ß+^)-ai cos(ß+^)sin a cos 7-aia2  sin(ß+fO) 

+ 2Iaxa2-2Ia2 cos(ß+szO{-sin(ß+szOsin a cos 7+ai cos(ß+ </>)){ ©t 

+    -2mrea2(-sin(ß+sz0sin a cos 7+ax cos(ß+jzO) 

- 2I[cos(ß+jz0sin a cos 7+ax sin(ß+jO )(-sin(ß+ jOsin a cos 7+ax cos(ß+jzO]pi 

+    21 cos(ß+^)(-sin(ß+jz$)sin a cos 7+ax cos(ß+jO}J 0$ 

+   [mre-a]. cos(ß+jzO-Ia2  sin(ß+s^)cos(ß+^) ]0 

+    mre{sin(ß+sz()sin OC cos 7-ai cos(ß+^)}    p 

=    0 (3-13) 

in 



where 

ai = -sin 9 sin 7 + cos 0 cos OL  cos 7 

&z    =     cos 0 sin 7 +  sin 0 cos 0! cos 7 

SPECIALIZATION TO THE CASE OF CONSTANT SHAFT SPEED 

The prohlem is now specialized to the case of constant rotational velocity 
of the shaft by setting t = 0, t = ft, and the equations are put into a nondimen- 
sional form "by defining the nondimensional parameters, 

"* = a1' =   h'J*ö/mx' 

and introducing the nondimensional time variable, 

T = fit 

It is seen that p is the nondimensional radius of gyration of the mass about 
the rod axis, e" is the nondimensional offset of the mass center of gravity from 
the rod axis and a^ and o^ are respectively the nondimensional natural fre- 
quencies in restrained bending and restrained torsion when the shaft is not ro- 
tating. 

Division of Eq. (3-11) by ft2mr2 and Eq. (3-12) by ft2I now yields, 
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[1+p    sin2(ß+izO]ö" + e cos(ß+M" 

+   ["-2p2  sin(ßV){cos(ß+iz()sin a cos y+a± sin(ß+^) }-2ea2  sin(ß+$zO    ^' 

+ 2p2 sin(ß+s^)cos(ßV)©V'   - e sin(ß+^)^'2 

+  [aia2+e{ai cos(ß+pOsin a cos 7+(af-al )sin(ß+sz4)} 

p a2 sin(ß+jzO(cos(ß+^)sin a cos 7+ai sin(ß+jzO} 

+ o^Q    =    0 (3.1M 

^ + §2 cos(ß+^)e" + [2 |g- a2 sin(ß+jzO 

+ 2  sin(ß+szO{cos(ß+jzOsin Cü cos 7+ai sin(ß+jzO ] T 9' 

i(ß+^)cos(ßV)6'2+    §2 a2(-sin(ß+j^)sin a cos 7+ax cos(ß+sO} sint 

+  [-sin(ß+j^)sin a cos 7+ax cos(ß+jZ$)) (cos(ß+^)sin a cos 7+ai sin(ß+^)) 

+ ü?A    =    0 (3-15) 

where primes denote differentiation with respect to T, and ai and a2 are as 

defined in the preceding section. 

Recognizing that constant shaft speed represents the limiting case of in- 
finite flywheel inertia, the term Ipt in Eq. (3-13) can be seen to remain finite 
and equal to the shaft torque, which may then, from Eq. (3.13), he written in 
the following nondimensional form, 
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Mrp    =      -sin a cos 7+ea2 cos(ß+^) 

+ p2 sin(ß+j^)(-sin(ß+^)sin a cos y+a.± cos(ß+^)]l  0" 

+      p2aa-"e(cos(ß+^)sin a cos 7+ai sin(ß+jz()}    ^" 

+     U2a;ia2+2F(al  sin(ß+^)-ai cos(ß+^)sin a cos 7-aj.a2  sin(ßV)} 

+ 2p2a1a2-2p2a2 cos(ßV){-sin(ß+^)sin a cos 7+ai cos(ß+^)]    0' 

+      -2ea2(-sin(ß+sz()siri a cos 7+ai cos(ß+$0) 

- 2p2(cos(ß+^)sin a cos 7+ai sinCß+o')} (-sin(ß+^)sin a cos 7+ai cos(ßV))]^' 

+ 2p2 eos(ß+(z() [-sin(ßV)sin a  cos y+a-x  cos(ß+^) ]©'^' 

+ [eai cos(ß+jzO-p2a2 sin(ß+jzOcos(ß+jzO ]9'2 

+ e[sin(ß+jz()sin a cos 7-ai cos(ßV)]^'2 (3-l6) 

where 

Rp    =    -^- 
mr" 

and Mrp is the dimensional torque. 

To facilitate solution, it is desirable to rearrange Eqs. (3.1*0 and (3.I5) 
in the form, 

fi©" + tzi"   =   -f3eV' - uix - *W*2 - 5?o - f6 (3.17) 

f79"  + JZ("    =    _f8Q-   . fgo-a  - 35^ - f10 (3.18) 

where 
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fa.    =    1 + p2 sin2(ß+szO 

f2    =    e cos(ß+jzO 

f3    = 2p sin(ß+^)cos(ßV) 

f4    = -2p2  sin(ß+^)(cos(ß+jz()sin a cos 7+ax sin(ßV) }-2ea2  sin(ß+^) 

f5    = -e  sin(ß+jzO 

f6    = aia2 + e(ai cos(ß+jzOsin a cos 7+(ax-a2 )sin(ß+jz()} 

- p2a2  sin(ß+^)(cos(ß+?()sin a cos 7+ax  sin(ß+jzO} 

f7    = % cos(ß+(0 

^8    =    2 J2-a2  sin(ß+<z0+2  sin(ß+^) {cos(ß+?0sin a cos 7+ai sin(ßV)} 
P 

f9    =    -sin(ßV)cos(ßV) 

fi.-, = §—a2(-sin(ß+^)sin a cos y+a.\  cos(ß+jzS)] 
P2 

+  (-sin(ßV)sin a cos 7+ai eos(ß+jzO }(cos(ß+^)sin CC  cos 7+ax sin(ß+s^)} 

Solving Eqs» (3.17) and (3.18) for 9" and ^" in terms of 0 and $  and their 
first derivatives yields the differential equations in the following form, 

fl-f2f'7 

J« 1 

[-f3o'<j>■-f±4--f5^' -0^0-f6+f2fae'+f2f9o
i2+f2ä|^+f2f10 ]  (3•19) 

_ _ P   [-fifse'-fifse^-fi^-fifio+fTfise'^' 

+ f7f4^
,+f7f3^,2+f7^e+f7f6j  . (3-20) 

Equations (3.19) and (3-20) are now in suitahle form for solution on 
digital or analog computer. 
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SOLUTION OF THE PSEUDO-STATIC PROBLEM 

It is of interest to determine the static configuration of the rotating 
model, that is, the static displacements under the action of centrifugal 
forces. This problem may be termed the pseudo-static problem.  Its solution 
permits the setting up and solution of linearized differential equations for 
small motions about the pseudo-static configuration. 

The appropriate equations are obtained by eliminating all terms contain- 
ing derivatives of 0 and <f>  from Eqs. (3-17) and (3.18), yielding, 

o§9s + f6 = 0 (3.21) 

äfyB  + fio = 0  . (3.22) 

These equations are nonlinear, with f6 and fio being transcendental func- 
tions of the dependent variables.  Since it is not feasible to obtain an ana- 
lytical solution in closed form, the following iterative procedure was applied. 

Equations (3.21) and (3-22) are linearized with respect to departures A9 
and A07 from trial values 0n and ^n, respectively, of the variables, yielding, 

7^9n + ^A9 + f6n + (^j ^ AO + fa*)     ^    =    0    (3.23) 

^n + cE^ + f10n + (^) n AQ + (^)  A^ = 0  (3.2U) 
tyj  n 

where subscript n denotes values at 9 = 9n, <f>  = ^n. 

Equations (3-23) and (3-24) are now rearranged in the form, 

(Ö^+flln)A9 + f12nA/ = -f6n - ^9n (3.25) 

f13nA9 + (^+f14nW = -fion "K^n (3-26) 

where 
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fl2      = . 

= a? - al - e[a2 cos(ß+^)sin a cos y+kax^s sin (ß+j^)) 

- p2 sin(ß+jz^)(a1 cos(ß+^)sin a cos 7+(af-af )sin(ß+jzO} 

of* 

2      2 
e(-ai sin(ßV)sin a cos 7+(a!-a2)cos(ß+jz0) 

-       -10 
-13    =      

p2a2     (cos2(ß+sz0-sin2(ß+jz0}sin Ot cos 7+2ai sin(ß+^)cos(ß+j^) 

of! 
de 

^14 

=    — t"ai sin(ß+^)sin a cos 7+(ai-af>)cos(ß+^)} 
P 

-    a2     {cos2(ß+^)-sin2(ßV)Jsin a cos 7+2ai sin(ßV)cos(ß+jz() 

dfio 
o^ 

=    - zä a2(cos(ß+^)sin a cos 7+ai sin (ß+szO) 

(cos(ß+j^)sin a cos y+a.^ sin(ß+^)} 

+    (-sin(ß+^)sin a cos 7+ai cos(ß+jzO)2 

Solution of Eqs.   (3.25) and  (3.26) for AG and ^ yields, 

AQ    =    -e4ne2n+e5nf12n 

S3n 

e3^ 

where 
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ei = ü^ + fu 

e2 = a^ + fi4 

e3 = exe2  - fi2fi3 

e4 = ö^0n + f6 

e5 = <3&n  + fio 

Equations (3-27) and (3-28) may be applied in conjunction with the iter- 
ation formulae, 

en+l = en + Ae (3-29) 

4+1 = h + ^ (3-30) 

using as initial values, Qi = 0, <j>x  = 0. The process has "been found to con- 
verge rapidly in the cases that have heen considered in the present work. 

FORMULATION AND SOLUTION OF THE LINEARIZED EQUATIONS 

In order to assess the significance of nonlinear effects in the prohlem 
under consideration, it is desirable to obtain also solutions to linearized 
equations for small perturbations 0 and <j>  from the pseudo-static configuration. 

Application of small perturbation theory to Eqs. (3.17) and (3.18) yields, 

fise" + (^+ flls)e + tsJ" + uj< + f12J =0        (3.31) 

f7so" + fsgö- + fi3Se"+ j" + (a?+fi4S)?" =  0 (3.32) 

in which subscript s denotes values corresponding to the pseudo-static config- 
uration 9 = 9S, 4  = ^s. 

Putting Eqs. (3-31) and (3.32) into operator form, using symbol p to de- 
note the differential operator, and expanding the determinant of coefficients, 
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the following characteristic equation is ohtained, 

clP
4 + c2p

2 + c3 = 0 (3.33] 

where 

d = fis " f2sf7s 

C2  =  flB(ö|+fl4B) + «£ + fllB - f2Bfl3s - f7sfl2s - f4sf8s 

C3  =  (^+flls)(^t+fl4s) " fl2sfl3s    • 

The terms in p and p3 are seen to vanish. 

The roots of this equation are 

if    =    5— (-c2 Wc§-4cic3) Pl    "    2Cl 

p2    "    2C1 
r— (-C2   - N/C1-UCIC3) 

and the characteristic frequencies are given hy 

©1    =   ^P? (3-3^) 

oe *^pf      • (3-35) 

The characteristic mode shapes may he determined hy assuming a solution 
of the form, 

0 = 90 cos cm- (3.36) 

</>0 cos CUT + =R- sin CDT    =    d cos  (COT-S)     . (3-37) 
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introducing Eqs. (3.36) and (3-37) into Eq. (3-3l)> and equating the sum of 
the coefficients of the cos CUT and the sin COT terms respectively to zero, the 
following result is obtained, 

7 IE (fgstB2-f12s)(-flsä3
g^flls) 

f4s-^(-fls^+f  ) (3o9)   T .  /IT- I _f,  "^   ' 

°'   °     " " /„ -2 „ ^ IST 

where co = tox, ag. 

The mode shapes may be expressed alternatively in the form, 

(3-M) 

where, from Eq. (3.37) it is seen that ^i/Ö0 is the relative amplitude of dis- 
placements in the two coordinates and e is the phase lag of the oscillation in 
the (^-coordinate relative to that in the 9-coordinate. 

A solution involving only one characteristic mode of oscillation may be 
obtained by selecting as initial conditions, 

0 = QS + e0 , 4   =   ts + i0 ,     4'   = s^o   <3-te) 

where 0O may be selected arbitrarily within the limitations imposed by the as- 
sumption of small perturbations, and <f>0  and fy  are then determined from Eqs. 
(3.38) and (3-39)- 

It should be noted that the existence of a phase difference between oscil- 
lation in the two coordinates is associated with the presence of the terms 
f4 4X  and f8sö' in Eqs. (3.31) and (3.32) respectively. These terms originate 
in the terms in Oijr and jzty in Eqs. (3.11) and (3.12), which are due to the pres- 
ence of Coriolis forces. 

DISCUSSION OF RESULTS 

A series of computations on the simple model were performed using an auto- 
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matic digital computer. There computations were limited to the case of con- 
stant rotational velocity of the shaft and zero "built-in coning angle (7 = 0). 

The pseudo-static configuration was determined "by means of the iterative 
procedure developed earlier, and corresponding characteristics of the linear- 
ized system for small perturbations from this configuration were computed. In 
each case additional computations were performed in which the terms f4Ss^' and 
f8S6' in Eqs. (3.31) and (3.32) were omitted. As discussed previously, these 
te'rms represent the influence of Coriolis forces, so that a comparison of re- 
sults obtained with and without their inclusion provides a means of assessing 
the importance of the Coriolis forces. 

These results are presented in Figs. 3-2 to 3-8 inclusive. Figures 3.2 
and 3.3 show the effect of varying the mass offset parameter e, with the param- 
eter p0, representing the nondimensional radius of gyration of the mass about 
its center of gravity, and the parameters, a, ß, a^ and o^ being maintained 
constant. Since the parameter p must be varied accordingly, the maintenance 
of a constant value for (% implies that the variation of e does not involve 
merely a shifting of the mass relative to the supporting arm but involves also 
changes in m or kJ  or both. The value of p0 selected for this case represents 
a rather extreme value, applicable to a short, wide blade. 

Figure 3-2 shows the substantial pseudo-static deformation occurring in 

-e 

Fig. 3-2.  Effect of mass offset on pseudo-static 
displacements of model, a = 3O0, ß = 15°, ä>b = 

1/3, 5t = 1, po = 0.1732. 
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this case.  It should he noted that the static twist decreases with increase 
in offset, when the center of gravity of the mass is behind the elastic axis. 
This occurs despite the fact that the relative values of the moment of inertia 
and torsional stiffness about the supporting arm remain the same because of 
the constancy of (%, which fact implies that centrifugal twisting moment, be- 
fore deformation, remains the same.  It must be concluded that the variation 
in twist is associated with a component of centrifugal force normal to the 
coning surface on which the supporting arm revolves. This effect is intro- 
duced through the term in mreijf2 in Eq. (3.12) and terms deriving from it in 
later forms.  It has been called "centrifugal force coupling" in Ref. 2, and 
shown there to have a substantial effect on natural coupled frequencies of vi- 
bration.  In the present case, since y = 0,  the coning of the supporting arm 
is associated solely with the displacement 0S. With positive 9S and a positive 
value for (a+ß+^s), this effect opposes that of centrifugal twisting moment. 
It can be expected to be more pronounced in the case of blades with built-in 

coning angle. 

Figure 3.3 shows the effect of mass offset on the natural vibration char- 
acteristics of the system linearized with respect to the pseudo-static config- 
uration. As can be expected, it is seen that the increased coupling between 
bending and torsion associated with increasing mass offset separates the natural 
frequencies and alters the natural mode shapes. 

It is seen also that the Coriolis forces introduce substantial phase dif- 
ferences between motion in the two coordinates, particularly in the case of 
the first or predominantly bending mode, where the phase angle is large through- 
out the range of e considered.  In the case of the second mode, where torsional 
motion predominates, the phase angle is substantial only at small values of e. 
When e is zero the only coupling between bending and torsion is through the 
Coriolis forces, and the phase difference is then 90°, ^ leading 0 by this 
amount in the case of the first mode and lagging by this amount in the case of 
the second mode. Furthermore, the Coriolis forces are seen to have a substan- 
tial effect on the mode shape of the first mode and a somewhat modest effect 
on the corresponding frequency. The corresponding effects on the second mode 
and frequency are seen to be small or negligible.  It should be noted here that 
the apparent absence in some cases of curves associated with neglect of Coriolis 
forces is explained by the fact that such curves are indistinguishable from 
the corresponding solid-line curves, and the effect of these forces is thus very 
small. 

Figures 3.4 and 3.5 provide results corresponding to those of Figs. 3.2 
and 3-5 f°r a different case, namely one involving a much smaller value of 
p0 and consequently more realistic in relation to propeller or helicoptor 
rotor blades.  Similar trends are observed, except that Coriolis force effects 
are considerably reduced, but still substantial with respect to phase differ- 
ences in the first mode. 
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Figure 3.6 shows the effect of varying the "bending hinge orientation 
angle while maintaining the orientation of the principal axis of the mass fixed. 
This involves varying a and ß so that a+ß remains constant, and simulates a sit- 
uation in which mean hlade angle is kept constant while built-in twist is varied. 
All other parameters were maintained constant.  Curves of 0S and $s  are not 
shown, as variations in those parameters were small.  For a variation of a from 
15° to i+5°, 0S varied from O.78

0 to O.970 and </>s  varied from -6.5O0 to -6.600. 
It is seen from Fig. 3.6 that first mode characteristics are affected very sub- 
stantially by changes in a, the phase difference between the 0 and <f>  motions 
especially varying over a very wide range. The effect on second mode charac- 
teristics is much smaller, although still considerable. 

Figures 3.7 and 3.8 show the effect of varying the rotational velocity of 
the shaft while other parameters remain constant. The information in Fig. 3.7 
is principally of value in estimating the pseudo-static torsional deformation 
corresponding to a given rotational velocity.  This deformation can be expected 
to depend primarily on the parameter ÜS^ in the case of a blade without built- 
in coning angle, although from results discussed earlier it can be seen also to 
depend somewhat on the parameters e and ö%. From Fig. 3.7 it can be seen that 
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Ufc 

Fig. 3-T- Effect of rotational velocity on pseudo-static 
displacements of model. öSt/öüb = 3, a = k^>°,  ß = -15°, p = 
0.2, e = -0.1. 

the torsional displacement will exceed 20$ of the initial "blade angle (a+ß) if 
a>£ is less than about 2, that is, if the rotational velocity is greater than 
ahout one-half the value of restrained torsional frequency corresponding to zero 
rotational velocity. 

Figure 3.8 indicates an increasing prominence of torsion relative to tend- 
ing in "both modes as rotational velocity becomes large.  It indicates further 
a marked sensitivity of the phase difference between coordinates in the first 
mode to variation in rotational velocity, at least in a limited range of rota- 
tional velocity. The phase angle is seen to approach zero at large values of 
rotational velocity. A somewhat different situation is seen to exist in the 
case of the second mode, where the phase angle increases with increase in ro- 
tational velocity. 

Digital computer solutions to the nonlinear differential equations were 
also obtained, using a Runge-Kutta procedure.  Initial conditions were estab- 
lished on the basis of natural vibration characteristics determined from the 
linearized equations, that is, by applying Eqs. (3.U2), using values from Eqs. 
(3.38) and (3-39) and the pseudo-static displacements. With such initial con- 
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ditions, the linearized system responds in only one of the natural modes, and 
comparison with the corresponding response of the nonlinear system provides a 
means of assessing the extent, to which nonlinear effects distort the motion. 

Results were ohtained for only one case and are shown in Fig. 3.9- Figure 
3.9(a) illustrates the response of the first mode when the initial tending dis- 
placement from the pseudo-static configuration is 10°.  Displacement in the 
tending coordinate predominates in that mode and its time history is seen to he 
distorted only slightly hy nonlinear effects. There is a slight increase in 
period and a very slight hut irregular variation in amplitude. The torsional 
response is seen to he strongly influenced hy nonlinear effects in a manner 
which suggests that there is suhstantial coupling with the second mode. The 
slight variation in amplitude of the tending motion is likely associated with 
this coupling. 

The response in the second mode for an initial tending displacement of 2° 
from the pseudo-static configuration is shown in Fig. 3-9(h).  In this case, 
displacement in the torsional coordinate predominates and has an amplitude of 
atout 22.5°.  It is seen that there is an appreciatle increase in period caused 
ty nonlinear effects, tut otherwise only a slight distortion of the motion in 
toth coordinates. Again, it is likely that this distortion is due to coupling 
with the first mode. 

The solutions were not carried far enough to ascertain whether there is 
a decay or divergence of the oscillations. The fact that such may exist is not 
inconceivahle, in view of the fact that the system is not necessarily conserva- 
tive. It has teen seen to te conservative when linearized with respect to 
small perturtations from the pseudo-static configuration.  However, with impo- 
sition of the condition of constant shaft rotational velocity it is a driven 
system, and it is possitle that nonlinear effects may result in a transfer of 
energy to or from it through the shaft. 

The results ohtained indicate that, at least for the case considered, any 
such divergence or decay will te small and protatly represent a negligible ef- 
fect in comparison with aerodynamic effects in the case of an actual tlade. 
It is possitle that a different choice of parameters or the introduction of 
tuilt-in coning may produce a different result. This requires further inves- 
tigation. 

On the tasis of the present results it appears that the effect of Coriolis 
forces is likely to have a greater practical significance than the effect of 
nonlinearity, particularly since it does not depend upon the existance of large 
motions. This relates mainly to the prohlem of tlade flutter, since the flutter 
phenomenon is highly sensitive to phase differences hetween motion in tending 
and torsion. The phase differences associated with the presence of Coriolis 
forces may conceivatly alter the talance in the flutter prohlem sufficiently to 
change the conditions for flutter significantly. 
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Other effects which have not been considered in the present study, but 
which can be expected to be of considerable importance in some cases, are 
those of nonlinearity of the torsional spring and of centrifugal tension on 
torsional stiffness and on pseudo-static deformation, as discussed in the 
Introduction. Their introduction into the present analysis should not re- 
sult in undue complication and would represent an appropriate and desirable 
extension of the present work. 
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k.     CONCLUDING REMARKS 

A practical numerical method, suitable for implementation on an automatic 
digital computer, has been developed for determining the natural vibration 
characteristics of twisted rotating and nonrotating "blades in coupled "bend- 
ing and torsion. A limited numerical study indicates that the method is an 
efficient one for including the effects of bendingtorsion coupling and pre- 
twist. The nature of the coupling is complicated and a much more extensive 
parametric study would he needed in order to draw general conclusions.  It 
can he said, however, that centrifugal force coupling can have an appreciable 
effect when there is a substantial offset of" the mass axis from the elastic 

axis. 

In order to investigate some effects of nonlinearity and Coriolis forces 
in the rotating blade vibration problem, a study has been made of a simple 
model with a small number of degrees of freedom. Computations performed on 
this model indicate the following: 

(1) There is an effect of centrifugal force, apart from the familiar 
centrifugal twisting moment, on the torsional deformation when the mass axis 
of the blade is offset from the elastic axis.  It may, in some cases, modify 
the static deformation of the rotating blade substantially, and tends to in- 
troduce additional coupling between bending and torsion when the blade is 
vibrating, as discussed also in the case of the continuous blade. 

(2) The presence of Coriolis forces causes a phase difference between 
the bending and torsional oscillations which is equal to 90° when the mass 
and elastic axes are coincident. This phase difference decreases when the 
mass and elastic axes are not coincident, but remains substantial in the 
case of a natural mode of the model consisting primarily of bending. 

(3) Nonlinear effects for large motions tend to change the natural fre- 
quencies of the system slightly and introduce some coupling between the 
natural vibration modes associated with solution of the linearized equations. 
A limited amount of results did not provide any evidence of decay or diver- 
gence of the free vibrations of the model. 
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APPENDIX A 

DIFFERENTIAL EQUATIONS OF MOTION 

The differential equations for free motion of a rotating twisted blade 
with offset mass and elastic axe9 are, from Ref. 2, with some changes in 
notation, 

-^[GJe-KTkA+EB1(ß
,)2V' - EB2ß' (8y cos ß+5z' sin ß) T« 

+ TeA(5y sin ß-8z cos ß) + CPpxe{-b^  sin ß+5z cos ß) 

+ nape(sin ß)8y +fi 2p [(kf-k2)cos 2ß+ee0 cos ß]^ 

+ p(k£+k )jrf - pe(6y sin ß-5z cos ß) = + (TkJJß')' 

- n2p[(k|-k2)sin ß cos ß+ee0 sin ß] 

[(Eli cos2 ß+EI2 sin
2 ß)5z' + (EI2-EIi)sin ß(cos ß)By 

- TeA^ cos ß - EB2ßV sin ß] "  - (T6^)' - (cfpxetf  cos ß)' 

+ p(5z+e^ cos ß) = (TeA sin ß)" + (fipxe sin ß) (Al) 

+ p(5z+e0 cos ß) = (TeA ein ß) + (fi pxe sin ß) 

IjEIs-EIjJsin ß(cos ß)5z' + (Eli sin
2 ß+EI2 cos

2 ß)5y 

+ TeA<t  sin ß - EB2ß'^* cos ß)] " - (T8')! + ((^pxe^ sin ß)' 

+ sfpetf  sin ß + pC&y-eJiJ sin ß) - ^pb„    = +(TeA cos ß) 

+ (n2pxe cos ß)' + J^pCeo+e cos ß) 

An explanation of the origin of the various terms in the equations is 
given in Ref. 2. The integrals which define the section constants Bi and B2 
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are given below 

r(T)2+^-k|)(r1
2
+f)dA 

(A2] 

B2 = / (n2+r-k^)TidA 

All other symbols are defined in the list of symbols. The coordinate system 

is as shown in Fig. 2.1. 

It should he noted that Eqs. (Al) are for small displacements from the 
undeformed configuration of the "blade when it is not rotating. The analysis 
of the present report linearizes the problem with respect to small displace- 
ments from the steady-state deformed configuration of the rotating blade. 
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APPENDIX B 

RESULTANT LOADINGS 

The resultant loadings per unit length in the x, £, and TJ directions have 
been obtained in Ref. 2 for a rotating twisted blade with offset mass and 
elastic axes. The loads include the inertial, centrifugal and Coriolis force 
terms. In the notation of the present report they are 

px = -pCü-J^u) - 2fipoi sin ß + 2fipo2 cos ß 

- pe5iß' + peo*2 + J^peBiß' - sfpebk  -  2flpe# sin ß + ft2 px 

PTJ = -p62 + J^PC-BI sin ß cos ß+62 cos
2 ß+eQ cos ß) 

- 2fipü cos ß + ^pe cos2 ß - J^pe^ sin ß cos ß 

- C?peQtf  sin ß - f^pejrf sin ß cos ß + 2flpe cos ß(-6iß'+62) 

Pf = -pBi - fi2p(-8i sin2 ß+82 sin ßcosß+e0sin ß) + 2fipü sin ß 

- pe^ - f^pe sin ß cos ß + J^pe^ sin2 ß - 2fipe sin ß(-5iß'+52) 

(Bl) 
- » pe0^ cos ß - J^pe^ cos

2 ß 

qx    = -C?pe   [_(-5i sin ß+52 cos  ß+e0)  sin ß + e0<f> cos ßl 

+ pe(-5i+2ftü sin ß)  - ft2   (jl^-I^)  sin ß cos ß + (Ij-I,,)^ cos 2ß] 

- (ij.+I^ - 2fl(l£-In)(-6l sin ß-oiß'cos ß+52 cos ß-62ß'   sin ß)sin ß cos ß 

+ 2n(l? sin2 ß+12 cos2 ß)(&i cos ß-5iß'  sin ß+52 sin ß+62ß'  cos ß) 

q^    = n2IT)(Si+52ß')  - ^(ßi+Baß') + 2flIT)j2 cos ß 

q*    = -f^peCx+u) + peü - 2pef2(-oi sin ß+62 cos ß) 

- flPlpBiß'  + tflfiz + I^Biß'  x I^o2  + 2Mgs2f sin ß 
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In the following, we eliminate terms in px which are dependent on dis- 
placement variahles and their derivatives, since these lead to nonlinearities 
in subsequent analysis, and terms in all force and moment expressions which 
involve u and its derivatives and first derivatives of the remaining displace- 
ment variahles. We also eliminate terms involving ß', since these terms arise 
when &i and &2 are derivatives referred to the axes r\  and t,  rotating ahout the 
x axis.  In the lumped parameter treatment, &{ and B2 can he considered to he 

derivatives with respect to locally fixed axes. 

Px = ^Px 

p      = -P&2  - f^P sin ß (cos ßßi + ü2p (cos2  ßß2 

- fi2p sin ß(2e cos  ß+e0)^ + ^P cos  ß(e cos ß+e0) 

pr    = -P&i + ^P (sin2  ßßi  - ^2P  sin ß (cos  ß) 62   - pe^ 

+ fi2pie(sin2 ß-cos2  ß)  - eQ cos ßU - Il2p sin ß(e cos ß+e0) 

(B2) 

q^    = -peSi + tfpe (sin2  ß£i  - ^pe sin ß (cos  ßB2 

- Ü2 -jpee0 cos ß+d^-I^)  cos 2ß U -  (I^+I^)^ 

ft2 sin ß*j pee0+(l^-IT)) cos ß p 

%    =    fi2lT!^  " V1 

„2,     '      ,.     •       na. 
q*    =    Ü I »82  - If&2  - ^ pex 

Now,  if we consider the matrix equation 

(Ä)N    =     [F]N(A}N ^ 

where   (A) is 
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[A}  =-< 

Mi 

61 

Bi 
V2 

62 

Bä 
Q 

>- (B4) 

and (A)N refers to the value of these quantities at station N just outboard 
of the mass, and {A)N refers to the values just inboard of the mass, it fol- 
lows that 

3X(H)  = Vl(
N) + p^M*) 

= Vl<
H>  + p^l^c^n*  sin2 ß)6lW  -    pWtWtf cos ß^in ßfe<N> 

+ p<NMN)   [e(N)[a^+(sln2 ß.cos2 ß)fi2)+e0n2 cos ß] ^ 

- p^hWü2 sin ß(e0(N)+e(N) cos ß) 

Tl •*■ 

= Ml<»>   - p(NMNWN)5l(N)  + IWIW(<*+&)*LW 

^■(N)     = &,(N) 

R   (N) (N) 

(B5! 
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v2
(N)    = v2W + p^N)i(N) 

= +V2
(N)   -p(E)i(N)

fi
2
Sinß(cosW1,) 

+ p(N)i(K)(a,2+n2 cos2  ß)82
(N) 

- p(N)|(%siriß(e(N)2coSß+e0W)^) 

+ p(N)i(N)
fi

2 cos ß(e0
(N)

+e(R) cos ß) 

Ä™     = *<«>  + H
WiW   - Px

(N)i(N)B2
(N) 

„  (N) (N).(N)   (N)np     (N) (N)   (H)   (N)   (N)^ (N)   (N) /   «+o2v- ' = M2-pi      x      fi 52 -p       I      x      e      sr + If       I       {cxF+u? J52 

&<*>  = 8ä(H) <B5> 

A(N)     (N)     (N) (N) 
Q    = Q   + q.x  i 

= p(N)i(N)e(N)(a)2+a
2 sin2 ß)Bl

(N) 

- pW/HW2=osß^ß)52
(H)
+Q

(M) 

+ [(l^I^V^2 + (ln-It)(N)(cos2 ß-sin* ß)i(N)n2 

- p^e^f^^n2 cos P]V
(M) 

(Vls)^)|^)ri= sin ß cos ß - p^Ä^o^ sin ß 
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APPENDIX C 

DEFORMATION OF A BLADE SEGMENT 

Consider a segment of a weightless beam for which the values of the mo- 
ment, torque, shear, and tension at a station N are given as Mx^ ', M2^ ', 
Q >  Vx  ,  V2   and T^ '.    Then moments and torques at other points along 
the segment are 

Ml = MxW +VxWs +T(N)8xU(NV 

Ma = Jfe(N) + V2(
N)s + T^Ba + w(NV (CD 

Q = Q(N) + U
(N)8l 

(N)     (N) where Ux ' and VT ' are the contributions of the centrifugal force coupling 
as explained in Appendix D, s is the longitudinal coordinate measured from 
station N toward the root, and primes denote differentiation with respect 
to s. These same quantities in terms of 8x and &2 for a twisted blade are 

Mx = EIif&i+2ß'B2+ß"B2-(ß')2&x] 

M2     = EI2J52-2ß'&i-ß"8x-(ß')282j   - TeA  - EB2ßV (C2) 

Q    = -  [GJe+Tk2+EBx(ß')2]  fr   - Tk|ß' 

+ EB2ß'   [82-2ß,&x-ß"51-(ß')252] 

For a straight segment Eqs.. (C2) reduce to 

Mi = EI1B1 

Ma = EI262 - TeA - EBaß's^' (03) 

Q = - [GJe+Tk|+EBi(ß')2] fr   -  Tk^ß' + EB2(ß')52' 
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Eliminating steady-state terms and combining Eqs.(Cl) and (C3), 

&2 - a3S2 - a4^' - &5tf    = "b3s + b4 (Ck) 

a66i - a75|! + a8i^'  = -b5 

where 

T(N) v^W 
ai  =  iiT x  =    E^ 

uttO Ml^) 
a2 =          b2 = —  

Eli Eli 

T(N) Va(N) a3  = ET 3  = ^r 
EB2ß' .      MgW a4   =   "ST 4   = ^T 

a  - W(N) b  - Q<*> 

a6 = U 

a7 = EB2ß' 

a8 = A(N^  = GJe + Tk^ + EBiCß'T 

These equations may he solved as they stand; however, considerable sim- 
plification can he achieved at a modest sacrifice in accuracy by replacing 
the term a5^ by a5^

N^= This modifies the second of Eqs. (Ck)  to read 

52 - a362 - a4^ = b3s + b6 * (C5) 
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where 

be . wW (B)t!fe0O 
EI2        EI2 

The characteristic equation for the new set becomes 

„4 _,_ f.   J2. 
f0P  + flP  + f 2  =  0 (C6) 

where 

fo = (a8-a4a7) 

fi = a2a6 - a8(ai+a3) + a!a4a7 

f2 = aia3as - a2a3a6 

The roots of this equation are then 

■s- - -k*kW)'-«>" ■ ^ 
When the solution is carried out, with the elements of (A)^ ' as initial values, 
and s is taken equal to I,  the following form for the solution results 

LP 
R«.(N+1) 

=        )      E3j^j 

J=l 

(H+l) 
10 

J=l 

,(N+1) 
&2 

10 

=       £    E7jAj 
J=l 

(C8) 
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10 
(N+l)     V"1 

52     =  )  E8jAj 

J=l 

rl? (C8) 
/N+l)  =  £ E10jAj 

where the Ejj are presented in Eq. (2.6) in the body of the report and A* are 
the elements of (A}W given in Eq. (2.1). 

The remaining Ej_j elements are found from the following equations which 
apply across each hay 

Vi(K+l) = V.(H) 

MI(N+I) = ^OU^OD, 

V2
(N+1) = V2

(N) (C9) 

lfe(H+l)  = *<»> + V2
(N)i 

QU+1)  = Q(N) 

It should he noted that the bending moment and torque quantities in Eqs. 
(C9) by definition do not include the contributions of the centrifugal force 
displaced to the elastic axis and of centrifugal coupling. These contribu- 
tions are introduced separately through satisfaction of Eqs. (Cl) in the solu- 
tion for the deformation variables. 
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APPENDIX D 

CENTRIFUGAL FORCE COUPLING 

As shown in Ref. 2, there is a type of coupling between tending and tor- 
sion associated with the presence of centrifugal forces. Explicit considera- 
tion must he given to the derivation of the terms associated with this coupling. 

If xi is used to denote the station where centrifugal force is acting and 
x the station where bending moment is measured, the components of bending mo- 
ment associated with offset of mass center from the elastic axis of the ro- 
tating blade may be written as follows: 

Mi = - cos(ß+(zO / P^PiXiei sin(ßi+^i)dxi 

R 

+ sin(ß+^) / ^PiXiex cos(ßi+^i)dxi 

R 

M2 = - sin(ß+jzO / ^piXiex sin (ßi+(^i)dxi 

(Dl) 

R 

cos(ß+j^) / f^PiXiei cos(ß+^i)dxi 

where subscript 1 refers to values at xi. 

Assuming <f>  to be a small angle and eliminating higher order terms, Eqs. 
(Dl) become, 

/* r Mi    =    - cos ß  /    ^piXiei sin ßidxi + <f> sin ß /    ^PiXiei sin ßidxi 

R 

cos ß /    ^piXiei^i cos ßidxx 

R 

+ sin ß / fi piXiei cos ßidxi + ^ cos ß / CrpiXiei cos ßidxi 

- sin ß / J^piXiei^i sin ßidxi (D2) 
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M2 = - sin ß / fi2pixiei sin ßidxi - <f>  cos ß / ^Pix^i sin ßidxx 

sin ß / ^piXiei0! cos ßidx! 

cos ß  /    fiSpixiei cos ßidxx + <f> sin ß  /    ^2piXiei cos  ßidxx 

x 
R 

+    cos  ß   /     f^PiXieis^i  sin ßidxi (D2) 

In each case, the first and fourth terms represent steady-state moments. 

An examination of Appendix B shows that the term -J^pex in q^ will give rise 
to these moments. They are taken into account through the element d6 in the 

{d} matrix. 

The third and sixth terms in each component represent the effect.of tor- 
sional displacement of the "blade mass on tending about the torsionally undis- 
placed positions of the r\  and i  axes in the Mx and M2 components respectively. 
This effect can he taken into account by an appropriate modification of the 
[F] matrix, incorporating a change in bending moment across each mass given 

AMi = - f^pixe^ (D3) 

yielding the element 

F2io = - fl2pixe (D>0 

The second and fifth terms represent the effect of centrifugal forces 
acting on the torsionally undisplaced masses between x and R on bending about 
the torsionally displaced TJ and £ axes in the Mi and M2 components respectively. 
They must be taken into account in the development of the [E] matrix.  In terms 
of the lumped mass model, the contribution to the bending moments in the bay 

between the nth and (n+l)th masses is 

75 



Mi    =    (sin ßn   \     ti iiPiXiej_  sin ß^+cos ßj   J     0 Pi*ixiei cos ßi ) 4 

^ i=l i=l / 

(D5 

/ n n \ 
M2    =    (-cos ßn 

n n \ 

\     ^p±I^x^ei sin ßi+sin ßn   \     ^Pi^iXiei cos ßi I <f> 

i=l i=l ' 

. «<% 

There is correspondingly an effect of bending on torque. It is associated 
with the fact that with a tending slope 8| at station x the centrifugal force 
fispiXidxi on an element dxi at station xi outboard of station x has a component 
-^PiXidxi&i normal to the T)'-axis in the plane of the cross section at station 
x. The moment arm of this force about the elastic axis is ei cos(ß-ßi), so 
that the contribution to the torque from this source may be written, 

R 

Q = - 6| / ^PiXiei cos(ß-ßi)dxi 

/     R R \ 
= - I sin ß / ti  PiXiei sin ßidxi+cos ß / Ü  PiXiei cos ßidXijBj.   (ü6) 

Applying this result to the lumped mass model, the contribution to the 
torque in the bay between the nth and (n+l)th masses is 

/     n n \ 
Q = - (sin ßn \ ^p^l^xie±  sin ß +cos ßn \       i^p^l^x^e^  cos ßj) 61 

^     i=l i=l '        (D7) 

and is taken into account in the development of the [E] matrix in Appendix C. 
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